Fracking zur Schiefergasgewinnung

Ein Beitrag zur energie- und umweltpolitischen Bewertung

Stellungnahme

Mai 2013
Danksagung

Der SRU dankt allen Vertretern aus Wissenschaft, Wirtschaft, Forschung und Interessenverbänden ebenso wie den Vertretern der Ministerien und Ämter des Bundes und der Länder, die zum Gelingen dieser Stellungnahme beigetragen haben. Ihre Unterstützung im Rahmen von Anhörungen, Expertengesprächen und der Text-kommentierung war von großer Bedeutung:

Dr. Georg Buchholz, Gaßner, Groth, Siederer & Coll., Berlin
Dr. Susanne Dröge, Stiftung Wissenschaft und Politik (SWP), Berlin
Uwe R. Fritsche, Internationales Institut für Nachhaltigkeitsanalysen und -strategien (IINAS), Darmstadt
Prof. Dr. Leonhard Ganzer, Institut für Erdöl- und Erdgastechnik, TU Clausthal
Dr. Heinrich Hern-Stapelberg, ExxonMobil Central Europe Holding GmbH, Hamburg
Dr. H. Georg Meiners, ahu AG, Aachen
Dr. Johannes Müller, Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover
PD Dr. habil. Ralf Ruske, beratender Geologe, Halle/Saale
Dr. Hans-Joachim Uth, Sachverständiger für Anlagensicherheit, Berlin
Martin Weyand, Bundesverband der Energie- und Wasserwirtschaft (BDEW), Berlin

Die volle Verantwortung für diese Stellungnahme übernehmen die Mitglieder des Sachverständigenrates für Umweltfragen.

(Redaktionsschluss: April 2013)
SRU-Stellungnahme Nr. 18
Inhaltsverzeichnis

1 Einleitung .. 5

2 Grundlagen ... 6
 2.1 Erdgas .. 6
 2.2 Konventionelle Erdgasförderung ... 7
 2.3 Unkonventionelle Erdgasförderung ... 8

3 Schiefergas im Kontext der Energiewende .. 10
 3.1 Schiefergaspotentiale – globale Verteilung und Unsicherheiten ... 10
 3.2 Markt- und Preiseffekte der Schiefergasförderung .. 13
 3.2.1 Schiefergasproduktion global .. 13
 3.2.2 Schiefergasproduktion regional – Deutschland und Europa ... 15
 3.3 Konsequenzen für die Energie- und Klimapolitik .. 17
 3.4 Synthese und offene Fragen zur Schiefergasgewinnung im Kontext der Energiewende.......................... 21

4 Umweltauswirkungen und -risiken .. 22
 4.1 Wasser und Gesundheit .. 23
 4.1.1 Wasserbereitstellung .. 23
 4.1.2 Oberflächennahe Belastungen .. 24
 4.1.3 Untereirdische Belastungen ... 27
 4.1.4 Entsorgung des Flowbacks ... 29
 4.1.5 Zusammenfassung der Defizite beim Wasser- und Gesundheitsschutz ... 30
 4.2 Luft ... 30
 4.3 Boden und Flächeninanspruchnahme .. 31
 4.4 Biodiversität ... 34
 4.5 Klimabilanz .. 35
 4.6 Handlungs- und Forschungsbedarf hinsichtlich der Umweltauswirkungen ... 37

5 Vorsorgeprinzip ... 39
 5.1 Von der Gefahrenabwehr zur Risikovorsorge ... 39
 5.2 Vorgaben des Vorsorgeprinzips für den Umgang mit Ungewissheit ... 40
 5.3 Fazit ... 40

6 Rechtliche Aspekte ... 41

7 Fazit ... 44

Abkürzungsverzeichnis .. 46

Literatur ... 48
Abbildungsverzeichnis

Abbildung 1 Erdölvorkommen sowie konventionell und unkonventionell förderbare Erdgasvorkommen7
Abbildung 2 Fracking-Verfahren..8
Abbildung 3 Schätzwerte technisch förderbarer Schiefergasressourcen (in Billionen Kubikmeter)11
Abbildung 4 Vergleich der Schiefergasressourcen-Abschätzungen für die USA und Polen (nach heutigem Stand der Technik förderbar) ..12
Abbildung 5 Gaspreisentwicklung in den USA ..15
Abbildung 6 Gewichtete Wechselkursentwicklung der USA gegenüber anderen Handelswährungen18
Abbildung 7 Abnehmende Produktion fossiler Energien in der EU im internationalen Vergleich19
Abbildung 8 Wirkungen auf und Risiken für Umwelt und Natur bei der Förderung von Schiefergas23
Abbildung 9 Flowback Damme 3 – Salzkonzentrationsverlauf und Rückschluss auf Lagerstättenwasseranteil ..28
Abbildung 10 Förderraten im Marcellus-Schiefergasfeld (Östl. Nordamerika) ..32
Abbildung 11 Schutz- und prüfwürdige Flächen für den Ausschluss der Fracking-Technik33

Tabellenverzeichnis

Tabelle 1 Energieträger, die mithilfe von Fracking in Deutschland gewonnen werden/werden könnten6
Tabelle 2 Einsatzzwecke der in Frack-Fluiden eingesetzten Additive ..9
Tabelle 3 Matrix der Preiseffekte der Schiefergasförderung ..17
1 Einleitung

Kritiker verweisen auf die aus ihrer Sicht erheblichen, noch ungeklärten oder möglicherweise nicht beherrschbaren Umweltrisiken. In diesem Zusammenhang werden vielfach ebenfalls Berichte aus den USA über Freisetzungen gefährlicher Substanzen angeführt, die mit gravierenden Umweltfolgen verbunden sind (Deutscher Bundestag 2012, S. 26297 ff.).

7. Der Sachverständigenrat für Umweltfragen (SRU) hält es für wichtig, eine Gesamtperspektive aufzuzeigen, die sowohl energiepolitische Aspekte betrachtet, als auch die Umweltrisiken berücksichtigt. In der vorliegenden Stellungnahme stützt er sich dabei auf die vorhandenen Studien, wirft aber wesentliche weitere Fragen auf. So unternimmt er insbesondere eine kritische energiepolitische Einordnung. Ange-sichts der großen energiepolitischen Hoffnungen, die in die Gewinnung von Schiefergas gesetzt werden, soll zunächst geklärt werden, ob und unter welchen Bedingungen Schiefergas überhaupt einen positiven Beitrag zur Energiewende leisten bzw. auch deren Zielen widersprechen kann.
Tabelle 1

<table>
<thead>
<tr>
<th>Energieträger, die mithilfe von Fracking in Deutschland gewonnen werden / werden könnten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas konventionell</td>
</tr>
<tr>
<td>Vorkommen (in Tiefe)</td>
</tr>
<tr>
<td>Zugabe von Stützmitteln</td>
</tr>
<tr>
<td>Zugabe von Chemikalien</td>
</tr>
<tr>
<td>Anwendung seit</td>
</tr>
<tr>
<td>Einsatz von Horizontalbohrtechnik</td>
</tr>
</tbody>
</table>

n. b. – nicht bekannt

Quelle: ¹ ExxonMobil 2012b; ² BGR 2012; ³ BMU 2007; ⁴ 2012; ⁵ ROSENWINKEL et al. 2012b; ⁶ WEG 2008; ⁷ GtV 2012; ⁸ EWEN et al. 2012; ⁹ RWE Dea 2012; ¹⁰ THIELEMANN 2008; ¹¹ Wintershall o. J.

2 Grundlagen

2.1 Erdgas

Abbildung 1

Erdölvorkommen sowie konventionell und unkonventionell förderbare Erdgasvorkommen

![Diagramm](image)

Quelle: UBA 2011

10. Erdgas aus unkonventioneller Förderung ist der Oberbegriff für thermogenes Erdgas, das zum Teil noch im Muttergestein oder in dichtem Speichergestein gebunden ist. Es wird zwischen Tight Gas mit Ressourcen von 0,1 Milliarden m³, Schiefergas (shale gas) mit Ressourcen von 1,3 Milliarden m³ und Kohleflözgas (coal bed methane) mit Ressourcen von 0,5 Milliarden m³ unterschieden (ANDRULEIT et al. 2012, Tab. 14). Tight Gas ist in dichten Gesteinsschichten wie Sandstein, Kalkstein und Tonmineralen gefangen. In Deutschland kommt es normalerweise in Schichten in einer Tiefe von 3.500 bis 5.000 m vor. Schiefergas liegt in kohlenwasserstoffreichen Sedimenten wie Ton- oder Ölschiefer, zumeist in Tiefen von 1.000 bis 5.000 m (BGR 2012). Kohleflözgas kommt in Verbindung mit Steinkohle in einer Tiefe zwischen 700 und 2.000 m vor (BORCHARDT 2011).

2.2 **Konventionelle Erdgasförderung**

12. Zusammen mit dem Erdgas gelangt auch Lagerstättenwasser über Tage, das abhängig von den geologischen Bedingungen (Druck, Temperatur, Gestein) mit Salzen, Metallen und Kohlenwasserstoffen sowie anderen Schadstoffen belastet sein kann. Es ist dann als human- und ökotoxikologisch problematisch einzustufen (s. Kap. 4.1). In Deutschland wird Lagerstättenwasser zur Entsorgung in der Regel in Versenkbrunnen mit Tiefen von 500 m bis mehreren 1.000 m verpresst (ROSENWINKEL et al. 2012b). Wenn das Fördervolumen von Erdgas wegen des nachlassenden Gasdrucks aus den Lagerstätten zurückgeht, kann eine sogenannte hydraulische Stimulierung (Hydraulic Fracturing, kurz Fracking) durchgeführt werden (s. a. Tab. 1).

2.3 Unkonventionelle Erdgasförderung

Erdgasgewinnung sind die Besonderheiten des Speichergesteins (besonders geringe Permeabilität, schnell abfallender Porendruck bei der Förderung) und die Anwendung einer modifizierten Fracking-Methode (s. Abb. 2). Dabei wird eine Tiefbohrung in die gasführenden Sedimentschichten abgeteuft und durch Horizontalbohrungen in den Speichergesteinen fortgesetzt. In den Horizontalbohrungen werden mechanisch durch Perforationskanonen Risse in das Stahlrohr gesprengt. Anschließend wird unter hohem Druck (bis zu 1.000 bar (EWEN et al. 2012)) ein Frack-Fluid (eine Mischung aus Wasser und Additiven) in den Untergrund gepumpt, um weitere Risse zu erzeugen und offenzuhalten.

Neben Sand oder Keramikpartikeln (Stützmittel zur Offenhaltung der Risse) werden dem Wasser verschiedene Chemikalien zugesetzt (Tab. 2; Abschn. 4.1.2). Die genaue Zusammensetzung der Frack-Fluide ist abhängig von den jeweiligen geologischen Bedingungen. Die bei den ersten Fracking-Versuchen zur Schiefergasgewinnung in Deutschland (Danne 3, Niedersachsen) verwendeten Rezepturen der Frack-Fluide wurden veröffentlicht (ExxonMobil o. J.).

Fracking-Verfahren

Quelle: EurActiv.de 2012
Tabelle 2

Einsatzzwecke der in Frack-Fluiden eingesetzten Additive

<table>
<thead>
<tr>
<th>Additiv</th>
<th>Einsatzzweck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stützmittel (Proppant)</td>
<td>Offenhaltung der beim Fracking erzeugten Risse im Gestein</td>
</tr>
<tr>
<td>Ablagerungshemmer (Scale Inhibitor)</td>
<td>Verhinderung der Ablagerung von schwer löslichen Ausfällungen, wie Karbonaten und Sulfaten</td>
</tr>
<tr>
<td>Biozid (Biocide)</td>
<td>Verhinderung des Bakterienwachstums, Vermeidung von Biofilmen, Verhinderung von Schwefelwasserstoffbildung durch sulfatreduzierende Bakterien</td>
</tr>
<tr>
<td>Eisenfällungskontrolle (Iron Control)</td>
<td>Verhinderung von Eisenoxid-Ausfällungen</td>
</tr>
<tr>
<td>Gelbildner (Gelling Agent)</td>
<td>Verbesserung des Stützmitteltransports</td>
</tr>
<tr>
<td>Hochtemperaturstabilisator (Temperature Stabilizer)</td>
<td>Verhinderung der vorzeitigen Zersetzung des Gels bei hoher Temperatur im Zielhorizont</td>
</tr>
<tr>
<td>Kettenbrecher (Breaker)</td>
<td>Verringerung der Viskosität gelhaltiger Frack-Fluide zur Ablagerung des Stützmittels</td>
</tr>
<tr>
<td>Korrosionsschutzmittel (Corrosion Inhibitor)</td>
<td>Schutz vor Anlagenkorrosion</td>
</tr>
<tr>
<td>Lösungsmittel</td>
<td>Verbesserung der Löslichkeit der Additive</td>
</tr>
<tr>
<td>pH-Regulatoren und Puffer (pH Control)</td>
<td>pH-Wert-Einstellung des Frack-Fluids</td>
</tr>
<tr>
<td>Quervernetzer (Crosslinker)</td>
<td>Erhöhung der Viskosität bei erhöhter Temperatur zur Verbesserung des Stützmitteltransports</td>
</tr>
<tr>
<td>Reibungsminderer (Friction Reducer)</td>
<td>Verringerung der Reibung innerhalb der Frack-Fluide</td>
</tr>
<tr>
<td>Säuren (Acids)</td>
<td>Vorbehandlung und Reinigung der perforierten Abschnitte der Bohrung von Zement und Bohrschlamm; Auflösung von säurelöslichen Mineralen</td>
</tr>
<tr>
<td>Schäume (Foam)</td>
<td>Unterstützung des Stützmitteltransports</td>
</tr>
<tr>
<td>Schwefelwasserstoffläufer (H₂S Scavenger)</td>
<td>Entfernung von toxischem Schwefelwasserstoff zum Schutz vor Anlagenkorrosion</td>
</tr>
<tr>
<td>Tenside/Netzmittel (Surfactants)</td>
<td>Verminderung der Oberflächenspannung der Fluide</td>
</tr>
<tr>
<td>Tonstabilisatoren (Clay Stabilizer)</td>
<td>Verminderung der Quellung und Verlagerung von Tommineralen</td>
</tr>
</tbody>
</table>

Quelle: BMU 2012, S. 11

3 Schiefergas im Kontext der Energiewende

Insofern könnte die Schiefergasförderung – sofern sie zu sinkenden Erdgaspreisen führt – die Ziele der Energiewende flankieren. Die unterstellten Preiseffekte müssen allerdings kritisch geprüft werden. Zunächst bedarf es einer realistischen Potenzialabschätzung global, für Europa und natürlich für Deutschland, um die Relevanz der Vorkommen einschätzen zu können. Außerdem müssen weitere Faktoren, die das Einflusspotenzial von Schiefergas auf die Brennstoffpreise bestimmen, global und regional differenziert betrachtet werden. Der Markt für fossile Energieträger ist zunächst durch Weltmarktentwicklungen geprägt (s. Tz. 19; Kap. 3.2); inwieweit die europäische oder nationale Schiefergasförderung die Preise beeinflussen kann, ist eine zentrale Frage.

Erst vor dem Hintergrund dieser differenzierten Betrachtung kann der politische Handlungsbedarfnichtlich der Entwicklungen beim Schiefergas zur Flankierung der europäischen und deutschen Energie- und Klimapolitik eingeschätzt werden.

3.1 Schiefergaspotenziale – globale Verteilung und Unsicherheiten

Schiefergas im Kontext der Energiewende

Abbildung 3

Schätzwerte technisch förderbarer Schiefergasressourcen (in Billionen Kubikmeter)

[Diagramm]

Quelle: Pearson et al. 2012, S. 27
Bei aller Unsicherheit der Datenlage ist jedoch klar, dass das mengenmäßige Potenzial von Schiefergas je nach Land bzw. Region sehr unterschiedlich ist und damit auch die möglichen Effekte der jeweiligen Schiefergasförderung auf die Erdgaspreise (s. Kap. 3.2). Die größten technisch förderbaren Schiefergaskonzentrationen weltweit werden derzeit in den USA (25 %) und China (20 %) vermutet. Für viele andere Länder liegen allerdings noch keine Potenzialanalysen vor. Weniger als 10 % des weltweit vermuteten technisch förderbaren Schiefergases entspricht den bisher verfügbaren Schätzungen zufolge auf Europa (PEARSON et al. 2012, S. 30 ff.).

Innerhalb von Europa sind nach einer Studie des BGR (2012, S. 31) und nach Angaben der EIA (2011b, S. 1–5, Tab. 1.3) die Hauptvorkommen von Schiefergas in Polen, Frankreich, Norwegen und Schweden zu finden. Es ist jedoch anzunehmen, dass sich diese Mengenverhältnisse bei fortlaufender Korrektur der Schätzwerte aufgrund von Wissenszugewinn (s. Polen) verschoben werden. Die BGR schätzt die förderbaren Schiefergasressourcen Deutschlands im Mittelwert auf etwa 1,3 Bill. m³. Sie legt dafür unkonventionelle Erdgasressourcen Deutschland im Mittelwert auf etwa 1,3 Bill. m³. Sie legt dafür unkonventionelle Erdgasressourcen zwischen 6,8 bis 22,6 Bill. m³ zugrunde und nimmt eine Förderquote von 10 % an. Nach diesen Abschätzungen sind die Schiefergasressourcen in Deutschland auch erheblich größer als die Erdgasressourcen in konventionellen Lagerstätten (0,02 Bill. m³ ohne Tight Gas) und auch größer als zum Beispiel die polnischen Ressourcen (ANDRULEIT et al. 2012). Die Autoren betonen allerdings, dass es sich auch bei den genannten Schiefergasressourcen für Deutschland um vorläufige Zahlen handelt und die notwendigen geologischen und geochemischen Daten zum Veröffentlichungszeitpunkt noch unvollständig waren (ebd., S. 19 ff.).

Zur Veranschaulichung der Mengenverhältnisse wird häufig das Konzept der statischen Reichweiten verwendet, bei dem gleichbleibender Verbrauch und eine vollständige Förderung vorausgesetzt wird. Die geschätzten technisch förderbaren Schiefergasressourcen von 0,7 bis 2,3 Bill. m³ hätten eine statische Reichweite von 8 bis 27 Jahren.

Die vorliegenden Potenzialabschätzungen sind alle wie bereits erläutert mit großen Unsicherheiten behaftet. Hinzu kommt, dass Umweltschutzauflagen und Ausschlussflächen (s. Kap. 4.3) für eine realistische Einschätzung der Schiefergaspotenziale berücksichtigt werden müssten, was aber in den vorliegenden Schätzwerten nicht erfolgt ist. Hier ist somit ein erhebliches Informationsdefizit festzustellen, das für die weitere Debatte abzubauen ist. Die unter den Restriktionen des Umweltschutzes sowie anderweitiger Raumansprüche förderbaren Mengen an Erdgas aus unkonventionellen Lagerstätten sind vermutlich deutlich geringer als die nach bisherigen
Kriterien ermittelten Potenziale. Ein weiterer Aspekt, der die Marktpotenziale des Schiefergases erheblich einschränken dürfte, ist die Wirtschaftlichkeit der Förderung, wenn die Produktion nur unter hohen Umweltauslagen – wie es in Deutschland unstrittig wäre – stattfinden darf.

3.2 Markt- und Preiseffekte der Schiefergasförderung

3.2.1 Schiefergasproduktion global

Kurzfristige Effekte auf Brennstoffpreise in Deutschland

Voraussetzung dafür, dass sich der Erdgasexport (aufgrund der Distanz als verflüssigtes Gas) von schiefergasreichen Weltregionen (Nordamerika, China) nach Europa zumindest theoretisch wirtschaftlich lohnt und somit Preisdruk auf dem hiesigen Markt entsteht, sind andauernde große Preisdifferenzen zwischen den Märkten. Je größer die Preisdifferenz, desto höher ist das Exportvolumen (EIA 2011a, S. 40; 2012a).

Zusammengenommen lassen diese Faktoren ein nur zeitweiliges Preistief in den USA vermuten. Tendentiell erwartet die IEA einen Wiederanstieg der Gaspreise in den USA (IEA 2012a, S. 107; 2012b, S. 41 und 43). Damit dürften auch die mittel- und langfristigen Preiseffekte für Europa schwächer ausfallen als die kurzfristigen, auch wenn solche Effekte nicht grundsätzlich auszuschließen sind.

3.2.2 Schiefergasproduktion regional – Deutschland und Europa

Kurzfristige Effekte auf Brennstoffpreise in Deutschland

Mit relativ großer Sicherheit kann gesagt werden, dass die Schiefergasproduktion in Deutschland und Europa zumindest kurzfristig nicht auf einem Niveau erfolgen wird, das eine Beeinflussung der Brennstoffpreise mit sich bringt. Dafür sprechen grundsätzlich die Potenzialabschätzungen, aber auch eine Reihe anderer Faktoren.

Wie in Kapitel 3.1 dargestellt, sind die mengenmäßigen Potenziale von Schiefergas in Deutschland im globalen Vergleich gering, insbesondere wenn aktuell in der Diskussion befindliche Kriterien für Ausschlussflächen das Flächenpotenzial für die

Weitere Hemmnisse sind die bisher vergleichsweise hohen Förderkosten in Europa, die in etwa dem Zweibis Dreifachen der Förderkosten in den USA entsprechen. Die Breakeven-Preise für die Schiefergasförderung in Polen oder Deutschland schätzt GÉNY (2010, S. 88) auf zwischen 20 und 40 Euro pro MWh. Es gibt Indikatoren dafür, dass der heutige Gaspreis in Deutschland und Europa zu gering ist, als dass sich in näherer Zukunft eine Schiefergasproduktion in großem Umfang auf dem europäischen Gasmarkt entwickelt (GÉNY 2010, S. 84 ff.; ZEW 2013).

Langfristige Effekte auf Brennstoffpreise in Deutschland

Tabelle 3 fasst die in Kapitel 3 hergeleiteten Einschätzungen zu den Effekten einer Schiefergasförderung auf die Brennstoffpreise in Europa zusammen.
Tabelle 3

<table>
<thead>
<tr>
<th>Potenzielle Förderung</th>
<th>Global</th>
<th>Regional (in Deutschland, in Europa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzfristig (bis 2020)</td>
<td>Deutlich, zurzeit aber eher indirekte Preiseffekte (Kohle wird billiger)</td>
<td>Sehr gering</td>
</tr>
<tr>
<td>Mittel- und langfristig</td>
<td>Direkte (Gas) und indirekte (Kohle) Effekte möglich, aber ungewiss und in der Tendenz weniger stark als kurzfristig</td>
<td>Ungewiss</td>
</tr>
</tbody>
</table>

SRU/Stellungnahme Nr. 18–2013/Tab. 3

3.3 Konsequenzen für die Energie- und Klimapolitik

Reindustrialisierung in den USA nicht durch Schiefergasrevolution erkärlbar

Ausschlaggebend für die Reindustrialisierung dürfte vielmehr sein, dass der Dollar im gewichteten Schnitt aller Handelswährungen seit 2002 um über dreißig Prozentpunkte abgewertet wurde (ARTUS 2013, Chart 11B, S. 6; Abb. 6). Damit werden Importwaren entsprechend teurer und Exporte entsprechend günstiger.

Wie in Kapitel 3.2 hergeleitet wurde (Tz. 19), gibt es darüber hinaus Anhaltspunkte dafür, dass der Gaspreisverfall der letzten beiden Jahre nur vorübergehender Natur ist und der Gaspreis mittelfristig auch in den USA wieder ansteigen könnte. Langfristige Investitionsentscheidungen kapitalintensiver Unternehmen erfolgen aber nicht auf der Basis kurzfristiger Preiszylken, sondern beachten die mittelfristigen Risiken. Insofern dürften andere Investitions motive (insb. Marktnähe, Wachstumspotenziale) von größerer Bedeutung für Direktinvestitionen einiger europäischer Industrien in die USA sein als die aktuell niedrigeren, mittelfristig voraussichtlich aber wieder steigenden Gaspreise.

Langfristige Preisentwicklungen legen keine Revision der Energie- und Klimapolitik nahe

Abbildung 6

Gewichtete Wechselkursentwicklung der USA gegenüber anderen Handelswährungen

Chart 11B

United States: Nominal trade-weighted exchange rate (1970:1 = 100)

Sources: Datasream, Natixis

_{Quelle: Artus 2013, S. 6}
Schiefergas im Kontext der Energiewende

Kein Wandel der Klimapolitik von „Bremerstaaten“ zu erwarten

Abbildung 7

Abnehmende Produktion fossiler Energien in der EU im internationalen Vergleich

Quelle: IEA 2012b, S. 65

Flankierender Handlungsbedarf im Falle kurzfristiger Preissverschiebungen

29. Im Stromsektor sind zwei unterschiedliche Aspekte relevant: einerseits die Wettbewerbsfähigkeit von Gas- und Dampfturbinenkraftwerken (GuD-Kraftwerke) gegenüber Kohlekraftwerken, andererseits die direkten und indirekten Folgen für den Ausbau der erneuerbaren Energien.

31. Der Wärmemarkt ist in Deutschland bereits heute dominant ein Erdgasmarkt, weshalb hier unmittelbar ein starker Effekt sinkender Erdgaspreise zu befürchten ist. Sinkende Erdgaspreise wären ein
Hemmnis für Effizienzmaßnahmen (FISCHER 2013). Da Wärmédämmung mit steigenden Kosten für die Kaltmieten verbunden ist, stoßen Maßnahmen, die über das hinausreichen, was sich über sinkende Betriebskosten relativ schnell refinanzieren lässt, schnell an Akzeptanzgrenzen. Bei sinkenden Gaspreisen würden die erzielbaren Energiekosteneinsparungen einer weitreichenden energetischen Sanierung deutlich sinken – was bei gegebenem öffentlichen Budget und den obigen Widerständen bedeuten kann, dass sich die Sanierungsrate verlangsamt. Damit sind die Effizienzzielen der Bundesregierung im Wärmebereich im Falle sinkender Gaspreise gefährdet.

32. Falls daher die globale Schiefergasentwicklung dauerhaft niedrigere Preise für Gas oder Kohle bewirken sollte, sind flankierende Instrumente ins Auge zu fassen, die negative Auswirkungen auf die Reduktion der THG-Emissionen und den Ausbaupfad der erneuerbaren Energien vermeiden. Im Stromsektor ist es von großer Bedeutung, Kostensenkungstrategien nicht an die Höhe der EEG-Umlage zu zählen: die negative Auswirkungen auf die Sanierungsrate verlangsamt. Damit sind die Effizienzzielen der Bundesregierung im Wärmebereich im Falle sinkender Gaspreise gefährdet.

33. Insgesamt wäre eine prozyklische Antwort der Energiepolitik auf denkbare Preissenkungen für Kohle oder Gas, wie ein Zurückfahren von Effizienzmaßnahmen oder des Ausbaupades der erneuerbaren Energien, verkehrt. Vielmehr sollten antizyklische, flankierende Maßnahmen, die die Energiewende weiter stabilisieren, bei Bedarf ins Auge gefasst werden.

3.4 Synthese und offene Fragen zur Schiefergasgewinnung im Kontext der Energiewende

- Wie hoch ist das tatsächliche Schiefergaspotenzial in Deutschland und Europa, das unter strengen Umweltauflagen und bei der vorsorglichen Befürchtung von Ausschlussflächen ökonomisch nutzbar ist? Wie schnell könnte sich eine kommerzielle Förderung von Schiefergas in Europa etablieren? Je länger die Vorlaufzeiten sind, desto weniger ist Schiefergas geeignet, eine Brückenfunktion im Rahmen der Energiewende zu übernehmen.

- Wie werden sich die Förderquoten, die Förderkosten, die Gesamtproduktion des Schiefergases in den USA und in anderen Regionen mit hohen vermuteten Vorkommen (z.B. China) einerseits und die globale Nachfrage andererseits entwickeln und in der Folge die Preise für Erdgas beeinflussen? Hierzu bestehen unterschiedliche Einschätzungen. Welche Entscheidungen hinsichtlich Exportpolitiken werden diese (zukünftigen) Förderländer treffen?

- Wie werden sich die konventionelle Förderung von Erdgas, zum Beispiel in Russland, Norwegen und Polen, sowie die Transport- und Infrastrukturkosten für verflüssigtes Erdgas entwickeln und damit Einfluss auf die Erdgaspreise nehmen?

Die Befürchtung, dass die sogenannte Schiefergasrevolution in den USA die Weltwertsposition der europäischen Wirtschaft nachhaltig verändere, hält einer genaueren Prüfung nicht stand. Für eine Revision der europäischen Klima- und Energiepolitik liefert die Schiefergasboom in den USA keine sicheren Gründe. In der öffentlichen Darstellung werden die sehr großen Unsicherheiten über die zukünftigen Marktentwicklungen häufig unzureichend kommuniziert, oftmals nur die sehr optimistischen Varianten. Letztlich besteht die Gefahr, dass auf der Basis solch einseitiger Deutung politische Fehlentscheidungen getroffen werden.

Die zentrale Schlussfolgerung der bisherigen Analyse ist, dass deutsches Schiefergas keinen wesentlichen Nutzen für die Energiewende wie leisten können und insofern der Förderung dieses Energieträgers auch

4 Umweltauswirkungen und -risiken

Für eine orientierende Einschätzung der Wirkungen auf sowie Risiken für Umwelt und Natur bei der unkonventionellen Schiefergasgewinnung sollen nachfolgend die möglichen Beeinträchtigungen der Schutzgüter Wasser und Gesundheit, Luft, Boden, Biodiversität und Klima dargestellt werden.

4.1 Wasser und Gesundheit

4.1.1 Wasserbereitstellung

Generell sind Fracking-Vorgänge zur Schiefergasförderung mit einem großen Wassereinsatz verbunden. Das Wasser wird zum Aufbrechen des Speichergesteins benötigt, um für das Erdgas künstliche Wegsamkeiten zu schaffen. Über einen Zeitraum von wenigen Wochen werden die für den Fracking-Vorgang benötigten Wassermengen aus Oberflächengewässern, Brauchwasserbrunnen oder dem lokalen Trinkwassernetz entnommen, mit Stützmitteln und Chemikalien zu Frack-Fluiden vermischt und über die
Hauptbohrungen in die gasführenden Sedimentgesteine niedergebracht werden. Von diesen aus können mehrere Horizontalbohrungen vorangetrieben werden, die unter Umständen bis zu 1,5 km lang sind (Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen 2012; EWEN et al. 2012).

EWEN et al. (2012) beziffern den Frack-Fluid-Bedarf je Bohrloch mit zehn Frackvorgängen auf jeweils 1.600 m³. Allerdings ist die eingesetzte Menge an Frack-Fluid sehr stark von den regionalen Bedingungen abhängig, beispielsweise der Tiefe des Gasvorkommens sowie der Materialieigenschaften des Speichergesteins (EPA 2011a). Im Tonschiefer können für die Gewinnung von Schiefergas für jeden Frackvorgang bis zu 5.000 m³ benötigt werden (BGR 2012). In den USA wird in der Schiefergasförderung für eine Horizontalbohrung ein durchschnittliches Fluid-Volumen von 11.400 m³ benötigt (EPA 2011a).

Im Vergleich zum gesamten in Deutschland verfüg- baren Wasser sind die für Frack-Vorgänge benötigten Wassermengen sehr gering. Da es sich jedoch um jeweils lokale Vorgänge mit örtlich sehr großem Wasserdarf über einen kurzen Zeitraum handelt, müssen an jedem Standort die Folgen der Wasserentnahme geprüft werden. Dazu wird es erforderlich sein, die regionalen Bedingungen der Wassernutzung sowie der Grundwasserneubildung zu bewerten und die mit der Oberfläche in Verbindung stehenden Grundwasserleiter zu erfassen. Diese Informationen sind in die Entscheidung der Behörden über die geplante Wasserentnahme einzubeziehen.

4.1.2 Oberflächennahe Belastungen

Obwohl die Frack-Fluide vorwiegend (≥ 95 %) aus Wasser bestehen, können aufgrund des großen benötigten Fluid-Volumens bei der Schiefergasförderung mehrere 100 m³ Chemikalien in das Sedimentgestein verpresst werden (EPA 2011a; EWEN et al. 2012). Abhängig von den geologischen Eigenschaften des Muttergesteins dienen die zugesetzten Chemikalien als Reibungsminderer, Gelbildner, Verdickungsmittel, Tonstabilisierer, Biozide, Lösungsvermittler, Kettenbrecher, Oberflächenspannungsminderer, pH-Regulierer, Quervernetzer oder Verzögerer für Quervernetzer sowie als Antischuammittel (s. Tab. 2).

Einige dieser Stoffe haben für Umwelt und Gesundheit problematische Eigenschaften. Für viele Komponenten sind die entsprechenden Informationen jedoch nicht verfügbar.

Schutz der Gesundheit

Auf dem Weg zum sicheren Umgang mit Chemikalien müssen die Voraussetzungen, unter denen dies möglich sein kann, bestimmt werden. Die Prüfung dazu folgt einem Verfahren, das qualitativ unterschiedliche Informationen sammelt sowie zusammenführt und im Folgenden skizziert werden soll.

Generell erfolgt die Bewertung des Risikos der Einwirkung von chemischen Stressoren nach dem Risk Assessment Paradigma des National Research Council der USA, wonach zwei getrennte Analysen (Gefahrenidentifizierung einschließlich Dosis-Wirkungsbeziehung und Expositionsbestimmung) vorzunehmen sind (NRC 1993). Für die Ermittlung des Risikos

Im folgenden Abschnitt wird die Bewertung der chemischen Additive zusammengefasst.

Bewertung der chemischen Additive

während der Betriebsphase regelmäßig überwacht werden. Da einige Stoffe im Boden möglicherweise persistent und wenig mobil sind, müssen auch die Böden, die eine Pufferfunktion übernehmen können, in ein verpflichtendes Monitoring aufgenommen werden.

Die Fachbehörden, die Wissenschaft und die Öffentlichkeit müssen in die Lage versetzt werden, die Risiken einer Ausbringung in die Umwelt zu beurteilen und brauchen dafür die erforderlichen Informationen. Für die Öffentlichkeit ist insbesondere der Aspekt der Transparenz von großer Bedeutung. Sollten Konflikte mit der Wahrung von Betriebs- und Geschäftsgeheimnissen bestehen, sollten die entsprechenden Regelungen des Umweltinformationsgesetzes Anwendung finden.

Kontaminationen von Trinkwasser und Grundwasser

4.1.3 Unterirdische Belastungen

50. Das Grundwasser kann durch Fracking auch über unterirdische Pfade belastet werden. Derartige Belastungen sind weitgehend irreversibel und schwierig zu begrenzen. Es soll daher im Folgenden zusammengefasst werden, welche Schutzanforderungen bestehen, welche geologischen Rahmenbedingungen vorliegen, welcher technische Eingriff relevant ist, in welcher Weise die Belastungspfade in Ausmaß und Eintrittswahrscheinlichkeit beurteilt werden und ob Informationsdefizite vorliegen.

51. Die Lagerstätten für Tight Gas, Schiefergas und Kohleflözgas liegen in großer Tiefe (Tab. 1) und damit weit von der für das Trinkwassergewinnung nutzbaren Aquiferen entfernt (BGR 2012). Die trennenden Gesteinschichten stellen in der Regel robuste Barrieren zwischen Erdgasgewinnung auf der einen und Grundwassernutzung auf der anderen Seite dar.

Die Fracking-Technik schafft künstliche Wegsamkeiten für das Erdgas über (multilaterale) horizontale Bohrungen und erschließt die Vorkommen flächenhaft. Um Lagerstätten in großer Tiefe zu erreichen, werden oberflächennahe Grundwasserkörper und tiefenwasserführende Schichten durchbohrt (ROSENWINKEL et al. 2012b; BGR 2012). Einige Tiefenwässer haben Verbindung zu Thermalquellen oder werden zur Mineralwassergewinnung genutzt und sind daher vor einem ungewollten Stoffeintrag ebenfalls großräumig zu schützen. Es muss geprüft werden, inwieweit ein Monitoring der Qualität dieser Tiefenwässer notwendig und praktikabel ist.

Spanne von 20 bis 80 %. Diese Werte werden auch von den Autoren der Studie hinterfragt (GROAT und GRIMSHAW 2012). Bei Untersuchungen in Damme, Niedersachsen, lag der Anteil des Frack-Fluids am Flowback am Anfang der Rückförderung bei 100 %, nahm dann aber sehr schnell ab und fiel innerhalb von nicht einmal acht Wochen auf unter 10 % (s. Abb. 9). Der größte Teil des Frack-Fluids verbliebt somit zunächst in den Rissen des Speichergesteins vor Ort.

Im InfoDialog Fracking wurde 2011 eine Arbeitsgruppe aus Experten verschiedener betroffener Fachdisziplinen gebildet (Neutraler Expertenkreis). Kriterien für die Auswahl der Experten waren die wissenschaftliche Expertise sowie die Unabhängigkeit von der Erdgasindustrie, insbesondere von ExxonMobil, dem Unternehmen, das diesen Dialog initiierte und die finanziellen Mittel dafür bereitstellte. Ziel war eine unabhängige Aufarbeitung des Wissensstands, eine kritische Kommentierung und die Veröffentlichung von Berichten. Der Neutrale Expertenkreis im InfoDialog Fracking legte Modellberechnungen vor, die zeigen, dass die Frack-Fluide auch unter konservativen Annahmen bei der Modellierung nur etwa 50 m aufsteigen können (EWEN et al. 2012). Im Fall von Kohleflözschichten wäre ein horizontaler Transport im Tiefenwasser möglich. So könnten sich Schadstofffahnen in Abhängigkeit von den geologischen Bedingungen horizontal pro Jahr etwa 20 m bewegen, was langfristig Reichweiten von Kilometern ermöglichen würde (ebd.).

Abbildung 9

Flowback Damme 3 – Salzkonzentrationsverlauf und Rückschluss auf Lagerstättenwasseranteil

Quelle: ROSENWINKEL et al. 2012b

Die zuständigen Fachbehörden müssen in der Lage sein oder in die Lage versetzt werden, diese Fachkenntnis aus der Begleitung und geologischen Aufnahme aller Tiefbohrungen in der Region zu erheben, zu vervollständigen und über Jahrzehnte zu pflegen. Dies ist sowohl behörden- als auch bundesländerübergreifend zu gewährleisten.

Außerdem muss sichergestellt werden, dass den Genehmigungsbehörden, der Wissenschaft und der Öffentlichkeit die notwendigen Daten für eine Bewertung der Risiken vorliegen. Ein transparenter Umgang mit den Daten, zu dem die Publikation in wissenschaftlichen Fachzeitschriften, die Präsentation auf Bürgerforen sowie die Veröffentlichung in freizugänglichen Datenbanken gehören, ist für einen qualifizierten Diskurs erforderlich.

4.1.4 Entsorgung des Flowbacks

Bevor die Beseitigungspraxis für Lagerstättenwasser aus der konventionellen Erdöl- und Erdgasgewinnung auf die Schiefergasgewinnung übertragen werden kann, sollten die Erfahrungen mit der Verpressung, die über Jahrzehnte gemacht wurden, systematisch erfasst und ausgewertet werden. Lage der Brunnen, Tiefe der Bohrung, Gestein, Mengen, Überwachung und Nachweis der dauerhaften Dichtigkeit sind die Voraussetzung für die Annahme, dass die Verpressung ein gesellschaftlich akzeptabler Entsorgungsweg sein kann.

Für eine Verpressung von Lagerstättenwasser und Flowback sollten im Sinne der Vorsorge folgende Aspekte vorab mit Votum der Wasserbehörde geklärt werden:

- geologische Eigenschaften der Standorte der Versenkbrunnen (Tiefe, Abschirmung, Mächtigkeiten, Aufnahmekapazität, Erdbebenrisiken);
- Charakteristik der Gaslagerstätte hinsichtlich des Lagerstättenwassers einschließlich dessen Zusammensetzung, der typischen Analyten als spätere Indikatoren und den voraussichtlich anfallenden Mengen;
- Bewertung von Transportmöglichkeiten (Tankwagen versus Pipeline);
- konkurrierende (sowohl beantragter als auch geplanter) Nutzungen;
- möglicherweise betroffene, geplante wie auch bereits eingerichtete, Schutzgebiete.
4.1.5 Zusammenfassung der Defizite beim Wasser- und Gesundheitsschutz

Zugang zu geologischen Daten und Informationen

58. Der Trink- und Grundwasserschutz hängt entscheidend davon ab, ob die grundsätzliche Eignung einer Gaslagerstätte zur Gasförderung richtig beurteilt wurde und ob die Schutzzwecke sowie bestehende und zukünftige Planungen zur Wassernutzung ausreichend berücksichtigt wurden. Die Daten und Informationen sind für die beteiligten Fachbehörden und die Öffentlichkeit derzeit unterschiedlich gut zugänglich. Eine Zusammenführung der vorhandenen Daten über Bohrungen und geologische Daten aus den umfangreichen Untersuchungen der jahrzehntelangen Bohrhistorie in einem öffentlich zugänglichen Kataster ist dringend geboten.

Kenntnisse über die hydrochemischen Verhältnisse sowie über vorhandene Altbohrungen und Störungen einschließlich ihrer hydraulischen Funktion müssen den Akteuren zur Verfügung stehen. Die zuständigen Fachbehörden müssen daher in der Lage sein oder in die Lage versetzt werden, diese Fachkenntnis aus der Begleitung und geologischen Aufnahme aller Tiefröhren in der Region zu erheben, zu vervollständigen, über Jahrzehnte zu pflegen sowie allgemein zugänglich zu machen. Dies ist sowohl behördens- als auch bundesländerübergreifend zu gewährleisten.

Es muss sichergestellt werden, dass den Geheimnissbereichen und der Öffentlichkeit alle notwendigen Informationen für eine Bewertung der Risiken vorliegen.

Beurteilung der chemischen Additive

Darüber hinaus sollte gewährleistet sein, dass Additive, die bei der Förderung von Erdgas aus unkonventionellen Lagerstätten zur Verbringung in die Speicherstätten vorgesehen sind, in der REACH-Verordnung ausreichend abgebildet sind. Gleiches betrifft auch die eingesetzten Fluidgemische.

Sammeln, Umfüllen, Transport von belasteten Wässern

Technische Sicherheit bei der Integrität hydraulischer Abdichtungen

Mittel- und Langfristfolgen des flächenhaften Aufschlusses

4.2 Luft

Im Folgenden wird explizit nur auf die Methan- und VOC-Freisetzung eingegangen.

Belastung mit Methan

64. Mit dem Fracking besteht die Möglichkeit, dass vermehrt Methan als relevantes Klimagas (Kap. 4.5) an die Oberfläche oder aber ins Grundwasser gelangt. Mit Grundwasser gefördertes Methan kann sich theoretisch entzünden. Für die Methanfreisetzung können neben den bereits erwähnten Ungedichtungen in den Zementierungen der Bohrlocher und Störungszonen auch undichte Pipelines verantwortlich sein (OSBORN et al. 2011; EWEN et al. 2012).

Belastung mit flüchtigen organischen Verbindungen

Insgesamt bestehen in den USA noch einige Fragen hinsichtlich der VOC-Belastung durch Fracking und seinem Beitrag zur Gesundheitsschädigung.

4.3 Boden und Flächeninanspruchnahme

Der Energieertrag pro Hektar oberirdisch genutzter Fläche ist abhängig von verschiedenen Rahmenbedingungen wie der Anzahl von Bohrlöchern pro Bohrplatz und der Ergiebigkeit der Lagerstätte. Tendenzial liegt der Flächenbedarf je kWh, die mit Erdgas erzeugt wird, niedriger als bei erneuerbaren Energien (ExxonMobil 2012a). Allerdings ist bei diesem Vergleich zu bedenken, wie lange und wie oft eine Fläche einen definierten Energieertrag erbringen kann (erneuerbare versus erschöpfbare Energieträger).

Die Flächeninanspruchnahme für unkonventionelle Erdgasgewinnung konkurriert im dicht besiedelten Industrieland Deutschland mit anderen Nutzungen, insbesondere der Landwirtschaft, der Forstwirtschaft und Siedlungen sowie der Erholung und dem Naturschutz. Dies betrifft gerade die Vorkommen in Niedersachsen und Nordrhein-Westfalen, die sich mit landwirtschaftlichen Intensivregionen decken, in denen schon jetzt ein hoher Druck auf die Fläche herrscht. Dadurch erhöht sich die Nutzungskonkurrenz und es kann aufgrund eines geringeren Flächenangebots zu einer Intensivierung der landwirtschaftlichen Nutzung kommen. Darüber hinaus erhöht sich der Druck auch auf die nicht landwirtschaftlich genutzten Flächen.

Die Förderung von Erdgas aus unkonventionellen Lagerstätten hat auch Auswirkungen auf das Landschaftsbild (z. B. Strukturelemente wie Hecken oder Gehölze, Erholungsgebiete usw.). Der visuelle Wirkaum eines Bohrplatzes mit möglicherweise kompensationspflichtigen Beeinträchtigungen wird mit etwa 400 bis 600 m und der akustische Wirkaum mit bis zu 500 m angegeben (SCHNEBLE et al. 2012).

- Schutzgebiete und geschützte Teile von Natur und Landschaft (s. §§ 20 ff. Bundesnaturschutzgesetz (BNatSchG): Naturschutzgebiete, Nationalparke, Nationale Naturmonumente, Biosphärenreservate, Landschaftsschutzgebiete, Naturparke, Natur-
denkmale oder geschützte Landschaftsbestandteile bzw. Natura 2000-Gebiete),

- Schutzgebiete nach WHG: Wasserschutz-, Heilquellenschutz-, Überschwemmungsgebiete oder andere Gebiete, die Zwecken des Gewässerschutzes gewidmet sind,

- Kulturgüter (z. B. Bau- und Bodendenkmale) und sonstige, öffentlichen Zwecken gewidmete Gebiete.

Als Ausschlussflächen für die Anwendung des Frackings (Afsuchung, Gewinnung, Entsorgung des Flowbacks) werden von verschiedenen Akteuren angesehen:

- Wasserschutzgebiete im Sinne von §§ 51 f. WHG (Zone I bis III) und weitere Trinkwassergewinnungsgebiete (vgl. BMU 2012; BDEW 2011; LBEG 2012; nur Zone I und II: EWEN et al. 2012),

Besonderen Schutzes bedürfen auch Gebiete, die zukünftig für die Trinkwassergewinnung von Bedeutung sein können, das heißt Vorrang- und Vorbehaltsgebiete für den Trinkwasserschutz (zur Nutzung vorgesehene Trinkwasservorkommen, empfindliche Bereiche der Grundwassereinzugsgebiete).

Auch die Möglichkeit einer Unterfahrung von Schutzgebieten durch Horizontalbohrungen muss kritisch hinterfragt werden, da bei unvorhergesehen Wegsamkeiten ein Risiko für die Trinkwasserversorgung entstehen kann.

4.4 Biodiversität

70. Die Anwendung von Fracking hat potenziell eine Reihe direkter und indirekter Auswirkungen auf die Biodiversität und stellt eine neue zusätzliche Belastung dar (SCHNEBLE et al. 2012; Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen 2012). Diese Auswirkungen resultieren zum einen aus der Flächeninanspruchnahme (Tz. 67), zum anderen aber auch aus dem Betrieb der Anlage selbst.

Durch die Flächeninanspruchnahme und die damit verbundene Entfernung oder Veränderung der vorhandenen Vegetation sowie die Überbauung und Versiegelung des Bodens kommt es zu einem Verlust von Habitaten und Landschaftselementen. Der Bohrplatz und die Zuwegung sind potenzielle Barrieren für die Ausbreitung von Individuen und Arten und können zu einer Zerschneidung von Habitaten führen und damit die diesbezügliche Situation in Deutschland weiter verschärfen. Nicht außer Acht gelassen werden darf, dass auch die Gewinnung von Energie aus erneuerbaren Quellen Beeinträchtigungen für die Biodiversität mit sich bringt.

Darüber hinaus können Ökosysteme auch durch Stoffeinträge im Zusammenhang mit Fracking-Maßnahmen beeinflusst werden. Lokal kann die Entnahme großer Mengen an Grundwasser (Abschn. 4.1.1) Auswirkungen auf den Wasserhaushalt und damit auf grundwasserbeeinflusste Ökosysteme wie beispielsweise Flüsse und ganz allgemein Feuchtgebiete haben. Ein weiterer potenzieller Einflussfaktor sind Stoffeinträge in Oberflächengewässer (ENTREKIN et al. 2011). Treten Störfälle, Unfälle oder Leckagen auf, kann dies zu Kontaminationen mit toxischen Additiven, Frack-Fluiden oder Flowback führen, die sich auf die betroffenen Ökosysteme auswirken.

Im Übrigen ist davon auszugehen, dass Fracking-Vorhaben nicht in Siedlungen, Wohngebieten oder anderweitig bebauten Flächen durchgeführt werden, sondern außerhalb dieser Gebiete. Je nach Standort können dabei neben landwirtschaftlichen auch Flächen betroffen sein, die noch in naturnahem Zustand oder in nicht landwirtschaftlicher naturverträglicher Nutzung sind und nicht unter Schutz stehen. Auch die Verlagerung landwirtschaftlicher Nutzung auf derartige Flächen hätte Auswirkungen. Angesichts der ohnehin zu verzeichnenden Gefährdungsfaktoren für die heimische biologische Diversität würde Fracking also zusätzliche und auch neuartige Belastungen mit sich bringen.

4.5 Klimabilanz

dem Flowback durch die entsprechenden Regelwerke ausreichend sichergestellt ist.

Untersuchungen zur Gasförderung in Nordamerika hingen ermitteln deutlich geringere Werte für die Klimabilanzen von Schiefergas sowie geringere Differenzen zu Erdgas aus konventionellen Lagerstätten. WEBER und CLAVIN (2012) leiteten aus sechs Peer-reviewed-Veröffentlichungen Wertebereiche für die THG-Emissionen aus Förderung und Transport von Schiefergas und Erdgas aus konventionellen Lagerstätten ab. Sie geben für Schiefergas 11,0 bis 21,0 g CO₂eq/MJ und für Erdgas aus konventionellen Lagerstätten 12,4 bis 19,5 g CO₂eq/MJ in Gas an (ebd., S. 5691).

Zur Beurteilung der Schiefergasförderung in Deutschland kann nur begrenzt auf Untersuchungen aus dem nordamerikanischen Raum zurückgegriffen werden. Es sind Klimabilanzerfassungen erforderlich, die die spezifische Situation der Schiefergasförderung in Deutschland widerspiegeln, wofür eine breite Datengrundlage notwendig ist (Produktionsvolumen, Bohrtiefe, eingesetzte Technik etc.). Besonders die flüchtigen Methanemissionen aus dem Flowback sind vor dem Hintergrund der in Deutschland eingesetzten Technik zu ermitteln. Dabei sind geringere Werte als in den vorliegenden Studien für die Schiefergasförderung in Nordamerika zu erwarten. Um einen objektiven Vergleich zwischen Schiefergas und anderen fossilen Energieträgern zu ermöglichen, sind auch Unsicherheiten bei der Berechnung der Klimabilanz von konventionellem Erdgas, Erdöl und Kohle abzubilden und zu kommunizieren. Auch eine differenzierte Betrachtung der einzelnen Energie träger, wie beispielsweise eine Unterscheidung von konventionellem Erdgas nach Herkunft, ist notwendig.

4.6 Handlungs- und Forschungsbedarf hinsichtlich der Umweltauswirkungen

Vorstehend wurde gezeigt, dass im Hinblick auf die Umweltauswirkungen des Frackings weitreichende Herausforderungen für den langfristigen Schutz von Wasser, Gesundheit, Luft, Boden, Biodiversität und Klima bestehen.

Diese lassen sich in verschiedene Kategorien ein teilen:

- Forschungsbedarf bzw. Wissenslücken über generelle Umweltrisiken, die geschlossen werden müssen, um das Risiko grundsätzlich beurteilen zu können,
- Regulierungsbedarf und Konzepte für ein angepasstes Umweltmanagement zur Minimierung der Umweltauswirkungen,
- Kenntnis der standortspezifischen Bedingungen, die sich nur für jedes konkrete Projekt ermitteln lassen, um die Eignung im Einzelfall einstufen zu können.

Forschungsbedarf bzw. Wissenslücken über generelle Umweltrisiken, die geschlossen werden müssen, um das Risiko grundsätzlich beurteilen zu können

- Auswirkungen der technischen Besonderheiten der Schiefergasförderung (wie z. B. Horizontalbohrungen, Beanspruchung der Rohre durch hohen Druck und Chemikalien, hohe Anzahl von Bohrungen) und gegebenenfalls Weiterentwicklung der technischen Sicherheitsstandards.
- Langzeitwirkung des Frackings im Speichergestein auf die Stabilität der Gesteinsschichten und hinsichtlich möglicher mikrobieller Prozesse entlang der ausgebildeten Risse.
- Wahrscheinlichkeit seismischer Ereignisse und deren Intensität.
Eignung der bestehenden Sicherheitsbewertungen für die eingesetzten Additive und Gemische für den untertägigen Einsatz.

Informationen über Wirkung, Verhalten und Verbleib der chemischen Additive beim Fracking, die über die Bewertung der Chemikalien im Rahmen der Klassifizierung nach der CLP-Verordnung hinausgehen. Ungeklärt ist zum Beispiel, welche Sekundärprodukte bei chemischen Reaktionen der Additive mit Solebestandteilen des Lagerstättenwassers bei hoher Temperatur und unter hohem Druck entstehen können.

Suche nach technisch adäquaten Alternativen für die eingesetzten Chemikalien.

Zusammenführung der Erfahrungen mit der Verpressung von Lagerstättenwasser aus der konventionellen Erdöl- und Erdgasförderung in Deutschland, systematische Auswertung (Lage der Brunnen, Tiefe der Bohrung, Gestein, Mengen, Überwachung und Nachweis der dauerhaften Dichtigkeit).

Möglichkeiten der Aufbereitung und Verwertung des Flowbacks.

Ausmaß der diffusen Verluste der flüchtigen Bestandteile (Methan und andere Kohlenwasserstoffe) und Möglichkeiten der Minderung.

Klimabilanz von Schiefergas unter Berücksichtigung der für deutsche Lagerstätten spezifischen Gegebenheiten (Bohrtiefe, Produktionsvolumen, eingesetzte Technik etc.), auch im Vergleich zu anderen Energieträgern.

Bewertung der deutschlandweit zu erwartenden Flächeninnanspruchnahme vor dem Hintergrund des Ziels der nationalen Nachhaltigkeitsstrategie von 30 ha/d bis 2020 und darüber hinausgehender Ziele der Flächenschonung.

Regulierungsbedarf und Konzepte für ein angepasstes Umweltmanagement zur Minimierung der Umweltauswirkungen

Definition von aus Vorsorgegründen auszuschließenden Flächen.

Vollständiger Zugang und Austausch von entscheidungsrelevanten Daten und Informationen zwischen den Akteuren (Unternehmen, Wasser- und Bergbehörden, Wissenschaft, Öffentlichkeit); Archivierung der Informationen für den Langzeitgebrauch; Aufbereitung der Daten für Modellierungen und Langzeitmonitoring.

Auswahl geeigneter Parameter für ein Monitoringprogramm, mit dem mögliche Ereignisse in der Tiefe erfasst werden können.

Begründungspflicht für die Notwendigkeit der Additive.

Festlegung eines Schutzniveaus für die Entsorgung des Flowbacks, Ausgestaltung eines Genehmigungsverfahrens, das die Wasserbehörde angemessen einbindet und in dem Schutzinteressen und Nutzungskonflikte abgewogen werden.

Sicherstellung des Einsatzes von geschlossenen Systemen, sodass flüchtige (Methan-)Emissionen im Flowback technisch abgeschieden werden und damit nicht freigesetzt werden können.

Ergänzung der Schutzprüfungen/Vorprüfungen um biodiversitätsrelevante frackingsspezifische Fragestellungen (z. B. Konsequenzen einer kurzfristigen hohen Wasserentnahme für umliegende, aber nicht direkt betroffene sensible Gebiete, kumulierte Auswirkungen der Einzelprojekte, Zergleichendes Grad der Landschaft).

Ausgestaltung eines langfristig angelegten Biodiversitätsmonitorings, um eventuell durch den Einsatz von Fracking zusätzlich entstehende Belastungen auf regionaler Ebene abzubilden.

Kenntnis der standortspezifischen Bedingungen, die sich nur für jedes konkrete Projekt ermitteln lassen, um die Eignung im Einzelfall einstufen zu können.

Erfassung der geologischen Bedingungen, wie die Barrieren für Gas und Wasser von der Oberfläche bis zum Gasspeichergestein in ihrer Anzahl, den jeweiligen Mächtigkeiten und der geologischen Kenndaten des Gesteins.

Aufnahme und Bewertung der physikalischen und chemischen Eigenschaften des Speichergesteins.

Aufnahme und Charakterisierung aller Aquifere.

Kenntnis über mögliche geologische Störungen, etwaige Altbohrungen sowie deren Verfüllungssart und aktuelle Zustände, welche durch Dichtigkeitsprüfung zu belegen sind.

Modellierung der Rissausbreitung beim Fracking.

Feststellung der Eigenschaften des Prozess- und des Lagerstättenwassers.

Ermittlung des Risikos der standortspezifischen Additive, Prüfung auf weniger gefährliche Alternativen.

Physikalische und chemische Eigenschaften sowie Mengen des Flowbacks.
5 Vorsorgeprinzip

Der rechtliche Begriff des Risikos bezeichnet anknüpfend an den Gefahrenbegriff jenen Bereich, in dem der Schadenszustand lediglich eine abstrakte Möglichkeit darstellt. Der Handlungsspielraum der staatlichen Institutionen erweitert sich, indem nicht mehr nur bei einer konkret nachweisbaren Gefahr Schutzmaßnahmen getroffen werden können, sondern schon im Falle einer abstrakten Besorgnis, verstanden als wissenschaftlich begründeter Anfangsverdacht.

5.1 Von der Gefahrenabwehr zur Risikovorsorge

5.2 Vorgaben des Vorsorgeprinzips für den Umgang mit Ungewissheit

Unter dem Vorsorgeanlass ist eine Sachlage zu verstehen, in der aus der unvollständigen Information über die Risiken abstrakt ein besorgnisrechtes Interesse der Gesamtwirtschaft resultiert, das nicht in einer physischen Erfassung eingeschlossen werden kann. In diesem Zusammenhang sind natürliche Schutzgerüste von zentraler Bedeutung, die dem Vorsorgeprinzip als Kriterien der Verhältnismäßigkeit dienen – geeignet um eine umfassende und praktikable Bewertung bereitzustellen, um entscheidende Kriterien für die Umsetzung der staatlichen Verantwortung zu liefern.

5.3 Fazit

Die Auswahl der Pilotprojekte sollte vorab auf der Basis einer transparenten öffentlichen Diskussion Kriterien erstellt werden, die gewährleisten, dass die Durchführung der Projekte so viele verallgemeinerungsfähige Erkenntnisse wie möglich

Für das Fracking werden auch größere Mengen Wasser benötigt (Tz. 37). Wenn die erforderliche Wasserversorgung durch die Entnahme von Grund- oder Oberflächenwasser erfolgt, so handelt es sich um eine Benutzung im Sinne des § 9 Absatz 1 Nr. 1 bzw. Nr. 5 WHG, die grundsätzlich einer wasserrechtlichen Erlaubnis bedarf, die die Bergbehörde im Einvernehmen mit der Wasserbehörde erteilt.

Auch im Hinblick auf andere Rechtsfragen besteht Klärungsbedarf. Zentral ist insbesondere die Frage, wie ein Monitoring der Umweltauswirkungen des Frackings sichergestellt werden kann, das die ganze Breite der Umweltauswirkungen erfasst (s. zum Erfordernis eines Monitorings die Ausführungen unter Kap. 4.6). Dies wäre von besonderer Bedeutung, weil sich bei bergbaulichen Vorhaben die Umweltauswirkungen im Unterschied zu vielen anderen umweltrelevanten Vorhaben nur schwer abschätzen lassen und daher im Rahmen einer Umweltverträglichkeitsprüfung (UVP) nur unzureichend vorhergesagt werden können (GAßNER und BUCHHOLZ 2013, S. 148). Der Forschungsbedarf betrifft aber beispielsweise auch die Frage, ob die Aufsuchung und unkonventionelle Förderung von Erdgas die Steuerung unterirdischer Nutzungen durch eine untertägige „dreedimensionale“ Raumordnung erforderlich macht (s. zur Raumordnung untertage HELLRIEGEL 2013; ERBGUTH 2011; ARL 2012; SGD 2012). Diskutiert wird zudem, wie der Flowback rechtlich einzuordnen und zu behandeln ist (SCHINK 2013). Fraglich ist schließlich auch, nach welchem Rechtsregime Vermeidungs- und Sanierungsmaßnahmen im Falle von Schäden an Grundwasser und Boden zu behandeln wären, mithin ob das Umweltschadensgesetz...

Wasserschutzgebiete

Umweltverträglichkeitsprüfung

88. Nach dem Gesetz über die Umweltverträglichkeitsprüfung (UVPG) sowie dem Bundesberggesetz (BBergG) in Verbindung mit der dazu ergangenen Verordnung über die Umweltverträglichkeitsprüfung bergbaulicher Vorhaben (UVP-V Bergbau) besteht eine Verpflichtung zur Durchführung einer UVP gegenwärtig nur für die Gewinnung von Erdgas zu gewerblichen Zwecken mit Fördervolumen von täglich mehr als 500.000 m³ Erdgas (§ 3b Absatz 1 Satz 1, Anlage 1 Nr. 15.1 UVPG i. V. m. § 1 Nr. 2 lit. a UVP-V Bergbau). Diese Fördermenge wird bei der unkonventionellen Erdgasförderung voraussichtlich nicht erreicht (BGR 2012, S. 35). Bei der Genehmigung der unkonventionellen Förderung von Erdgas findet auch keine Vorprüfung im Einzelfall statt, die nach den Kriterien der Anlage II UVPG aufgrund von Merkmalen, Standort und möglichen Auswirkungen des Vorhabens darüber entscheidet, ob eine UVP im Einzelfall erforderlich ist. Ausnahmsweise muss eine UVP durchgeführt werden, wenn nach § 3b Absatz 2 UVPG mehrere Vorhaben derselben Art, die gleichzeitig von demselben oder mehreren Trägern verwirklicht werden sollen und in einem engen Zusammenhang stehen, zusammen die maßgeblichen Größen- oder Leistungswerte erreichen oder überschreiten. Dies gilt auch, wenn nach § 3b Absatz 3 UVPG der maßgebende Größen- oder Leistungswert durch die Änderung oder Erweiterung eines bestehenden bisher nicht UVP-pflichtigen Vorhabens erstmals erreicht oder überschritten wird.

Vorprüfung durchgeführt, kann jede so erteilte Ge-
nehmigung mit einem Rechtsbehelf nach § 4 Umwelt-
rechtsbehelfsgesetz angegriffen werden, was zur Folge
hat, dass die Unternehmen keine Rechtssicherheit
genießen.

Seit 2011 werden verschiedene Empfehlungen dis-
kuutiert, um die Fracking-Verfahren einer UVP zu
unterziehen (umfassende Darstellung der rechtspolitischen Vorschläge bei ROßNAGEL et al. 2012, S. 87 ff.). Die Bezirksregierung Arnsberg plädierte 2011 für die Änderung des § 1 UVP-V Berg-
bau, in die ein neuer Tatbestand für Bohrungen –
sowohl für die Aufsuchung als auch für die Ge-
winnung – aufgenommen werden soll, der eine all-
gemeine Vorprüfung des Einzelfalls nach § 3c UVPG
vorsieht. Für die Gewinnung von Erdgas aus unkon-
ventionellen Lagerstätten sollen neben der Förder-
menge weitere Tatbestände formuliert werden, die zu
einer UVP-Pflicht führen (Bezirksregierung Arnsberg
2011). Der Bundesrat hat Ende 2012 einen Entwurf
einer Verordnung vorgelegt, der die Pflicht zur Durch-
führung einer UVP für Vorhaben der Erdöl- und Erd-
gasgewinnung mit drei oder mehr Bohrstandorten, die
betrieblich durch Leitungen miteinander verbunden
sind, vorsieht. Zudem sollen auch Einzelbohrungen,
insbesondere zur Aufsuchung und Gewinnung von
Erdgas, einer obligatorischen UVP unterworfen
werden, wenn dabei mit hydraulischem Druck ein
Aufbrechen von Gesteinen erfolgt oder unterstützt
wird. Für die anderen Tiefbohrungen im Rahmen der
Aufsuchung und Gewinnung von Erdöl- und Erdgas
soll eine allgemeine Vorprüfung des Einzelfalls nach
§ 3c UVPG vorgenommen werden (Bundesrat 2012).
Auch in der Entschließung des Bundesrats von Anfang
Februar 2013, die ein Moratorium für die Ge-
nehmigung von Fracking-Vorhaben formuliert, fordert
dererneut eine obligatorische UVP und Öffentlich-
keitsbeteiligung ein (Bundesrat 2013). Der Gesetzes-
entwurf vom Februar 2013 enthält eine Ergänzung der
UVP-V Bergbau dahingehend, dass künftig auch die
Aufsuchung und Gewinnung von Erdöl und Erdgas zu
gewerblichen Zwecken in den folgenden Fällen einer
obligatorischen UVP unterliegen (BMWi und BMU
2013):
- Aufsuchung durch Tiefbohrung mit Aufbrechen
 von Gestein unter hydraulischem Druck,
- Gewinnung durch Tiefbohrung mit Aufbrechen
 von Gestein unter hydraulischem Druck (Nach-
weis).
Außerdem sollen Angaben über die Behandlung der
eingesetzten Fluide und des Lagerstättenwassers ge-
macht werden.

Der SRU stimmt diesem Vorschlag zu, ist aber – wie
vorstehend ausgeführt – darüber hinaus der Auf-
fassung, dass auch in anderen Fällen von Tief-
bohrungen, die nicht mit einem Fracking-Vorgang
verbunden sind, jedenfalls eine UVP-Vorprüfung des
Einzelfalls stattfinden sollte.

Öffentlichkeitsbeteiligung

89. Grundsätzlich vertritt der SRU die Auffassung,
dass eine Öffentlichkeitsbeteiligung insbesondere bei
der Einführung einer umstrittenen Technologie
wesentlich ist. Die Einführung einer solchen Techno-
logie muss mit einer Transparenz über die Planungen
einhergehen und es müssen ausreichend Informationen
zur Verfügung gestellt werden. Die Risiken der
Technologie sollten einer interessierten Öffentlichkeit
bekannt sein. Entsprechend sollte die Risikobewertung
so vorgenommen werden, dass die Öffentlichkeit in
der Lage ist, zu einer validen Einschätzung zu
gelangen. Die bereits bestehende Kontroverse um das
Fracking in Deutschland zeigt, dass die Frage der
Akzeptanz entscheidend dafür werden kann, ob diese
Technologie in Deutschland im breiten Rahmen ein-
gesetzt werden wird. So kündigte eines der Erdöl-
unternehmen, das über Konzessionen zur Erkundung
von Erdgas in unkonventionellen Lagerstätten in
Nordrhein-Westfalen verfügt, an, nur fördern zu
wollen, soweit dafür die gesellschaftliche Akzeptanz
vorgehalten sei. Auch das Bemühen eines der Förder-
unternehmen, im Rahmen eines innovativen
Informations- und Dialogprozesses Fragen zur Sicher-
heit und Umweltverträglichkeit der Fracking-
Technologie für die Erdgasgewinnung zu klären,
zeigt, dass die betroffenen Unternehmen die Be-
deutung der öffentlichen Akzeptanz für die zukünftige
Anwendung von Fracking als hoch bewerten
(ExxonMobil 2012b).

90. Ursache der derzeitigen völligen Abwesenheit
von Beteiligungsmöglichkeiten der Öffentlichkeit bei
Fracking-Vorhaben in Deutschland ist zunächst eine
unzureichende Umsetzung der UVP-Richtlinie
(Tz. 88). Wenn eine UVP jedenfalls für die Förderung,
der Umstände aber auch für die Erkundung, von
unkonventionellen Gasvorkommen eingeführt wird,
würde ein formelles Öffentlichkeitsbeteiligungs-
verfahren durchgeführt, das nach § 9 UVPG i. V. m.
§ 73 Absatz 3 Satz 1, Absatz 4 bis 7 Verwaltungs-
verfahrensgesetz (VwVfG) die Bekanntmachung des
Vorhabens, die Auslegung der Planungsunterlagen,
die Möglichkeit für Einwendungen, einen Er-
örterungstermin sowie die abschließende Ent-
scheidung über das Genehmigungsverfahren ein-
schließen würde. Die Europäische Kommission sowie
das Europäische Parlament haben diesen Punkt zu
Recht betont (Europäisches Parlament 2012c, S. 7).
Die Durchführung einer UVP mit Öffentlichkeits-
beteiligung stellt eine Mindestanforderung dar, weil
gerade für gesellschaftlich besonders umstrittene
Vorhaben wie Fracking dem Vertrauen der Be-
völkerung in die sorgfältige und unabhängige Prüfung
und Überwachung der Umweltauswirkungen durch die
zuständigen Behörden besondere Bedeutung zukommt
(HEFTER et al. 2012, S. C91). Es ist auch auf die
Möglichkeit einer Öffentlichkeitsbeteiligung im
Rahmen einer Strategischen Umweltverträglichkeits-
prüfung hinzuweisen, soweit dem bergrechtlichen
Genehmigungsverfahren eine Raumordnungsplanung
vorgeschaltet ist (ROßNAGEL et al. 2012).
7 Fazit

91. Schiefergas ist Erdgas, das in unkonventionellen Lagerstätten eingeschlossen ist und sich nur mithilfe des Hydraulic-Fracturing-Verfahrens, kurz Fracking, erschließen lässt. Bei dieser Technik wird mit verschiedenen Zusätzen angereichertes Wasser unter hohem Druck in die erdghaltigen Gesteinschichten verpresst. So entstehen Risse, die die Durchlässigkeit des Gesteins erhöhen und das Abströmen des Erdgases an die Oberfläche ermöglichen.

Wichtig ist die anstehende Formulierung anspruchsvoller Klimaschutzziele für 2020 und 2030, die auch eine Vorknappung der Emissionsrechte zur Folge haben werden. So kann das Risiko minimiert werden, dass die globale Erschließung von Schiefergas als zusätzliche Rohstoffquelle die Emissionen in Europa erhöht.

Für eine abschließende Risikobewertung hat die vorstehende energiewirtschaftliche Einschätzung weitreichende Folgen, da die Risikobewertung immer einen Abwägungsvorgang zwischen den naturwissenschaftlich ermittelten Risiken und dem gesellschaftlichen Nutzen der Technologie darstellt.

Nach Einschätzung des SRU ist Fracking keine neue Technologie im eigentlichen Sinne, es soll jedoch in einem für Deutschland neuen Anwendungsgebiet, der Schiefergasförderung, eingesetzt werden. Durch das Fracking und die Erschließung des Schiefergases können verschiedene Schutzgüter berührt werden. Von besonderer Bedeutung ist die Vermeidung von Stoffeinträgen in das Grund- und Trinkwasser, die
Schutzgüter von großer gesellschaftlicher Relevanz darstellen. Darüber hinaus sind auch Umweltbelastungen durch die Flächeninanspruchnahme und Effekte auf die Biodiversität sowie die Klimabilanz zu bedenken.

Weiterer Forschungsbedarf besteht hinsichtlich der Klimabilanz des Schiefergases unter Berücksichtigung der für deutsche Lagerstätten spezifischen Gegebenheiten (Bohrtiefe, Produktionsvolumen, eingesetzte Technik etc.). Die Spannbreite der Klimabilanzen für Schiefergas ist außerordentlich groß, entsprechend unsicher ist die Klimabilanzierung im Vergleich zu Energieträgern aus konventioneller Förderung.

Auch die Schiefergasförderung ist – wie die Gewinnung von fossilen Energien und Rohstoffen – mit kumulierten Effekten durch die Flächen- und Wasserinanspruchnahme, mit Eingriffen in den Naturhaushalt und möglichen Verlusten an biologischer Diversität verbunden, die grundsätzlich soweit wie möglich vermieden werden müssen.

Im Ergebnis kommt der SRU hinsichtlich des Frackings zur Schiefergasförderung zu folgenden Schlussfolgerungen:

- Fracking ist energiepolitisch nicht notwendig und kann keinen maßgeblichen Beitrag zur Energiewende leisten.
- Fracking ist im kommerziellen Umfang derzeit wegen gravierender Wissenslücken nicht zuzulassen.
- Fracking ist erst auf der Basis positiver Erkenntnisse aus systematisch zu entwickelnden Pilotprojekten verantwortbar.
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEO</td>
<td>American Energy Outlook</td>
</tr>
<tr>
<td>AEUV</td>
<td>Vertrag über die Arbeitsweise der Europäischen Union</td>
</tr>
<tr>
<td>BBergG</td>
<td>Bundesberggesetz</td>
</tr>
<tr>
<td>BGR</td>
<td>Bundesanstalt für Geowissenschaften und Rohstoffe</td>
</tr>
<tr>
<td>BIP</td>
<td>Bruttoinlandsprodukt</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit</td>
</tr>
<tr>
<td>BNetSchG</td>
<td>Bundesnaturschutzgesetz</td>
</tr>
<tr>
<td>BTEX</td>
<td>die aromatischen Kohlenwasserstoffe Benzol (B), Toluol (T), Ethylbenzol (E) sowie die Xylole (X, nach IUPAC-Nomenklatur Dimethylbenzole)</td>
</tr>
<tr>
<td>BVerfG</td>
<td>Bundesverfassungsgericht</td>
</tr>
<tr>
<td>BVerwGE</td>
<td>Entscheidungen des Bundesverwaltungsgerichts</td>
</tr>
<tr>
<td>BVOT</td>
<td>Tiefbohrverordnungen</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CIT</td>
<td>5-Chlor-2-methyl-2H-isothiazol</td>
</tr>
<tr>
<td>CLP</td>
<td>Classification, Labelling and Packaging</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>CO₂eq</td>
<td>CO₂-Äquivalent</td>
</tr>
<tr>
<td>EEG</td>
<td>Erneuerbare-Energien-Gesetz</td>
</tr>
<tr>
<td>EIA</td>
<td>U.S. Energy Information Administration</td>
</tr>
<tr>
<td>EuGH</td>
<td>Europäischer Gerichtshof</td>
</tr>
<tr>
<td>FFH</td>
<td>Fauna-Flora-Habitat</td>
</tr>
<tr>
<td>GG</td>
<td>Grundgesetz</td>
</tr>
<tr>
<td>GIP</td>
<td>Gas-In-Place</td>
</tr>
<tr>
<td>GOW</td>
<td>gesundheitlicher Orientierungswert</td>
</tr>
<tr>
<td>GuD-Kraftwerk</td>
<td>Gas- und Dampfturbinenkraftwerk</td>
</tr>
<tr>
<td>H₂S</td>
<td>Schwefelwasserstoff</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency – Internationale Energieagentur</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LBEG</td>
<td>Landesamt für Bergbau, Energie und Geologie</td>
</tr>
<tr>
<td>LNG</td>
<td>liquefied natural gas – Flüssigerdgas</td>
</tr>
<tr>
<td>MIT</td>
<td>2-Methyl-2H-isothiazol-3-on</td>
</tr>
<tr>
<td>MJ</td>
<td>Megajoule</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawattstunde</td>
</tr>
<tr>
<td>N₂</td>
<td>molekularer Stickstoff</td>
</tr>
<tr>
<td>PGI</td>
<td>Polnisches Geologisches Institut</td>
</tr>
<tr>
<td>REACH</td>
<td>Registration, Evaluation, Authorisation of Chemicals – Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe</td>
</tr>
<tr>
<td>SRU</td>
<td>Sachverständigenrat für Umweltfragen</td>
</tr>
<tr>
<td>THG</td>
<td>Treibhausgas</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>U.S. Environmental Protection Agency – Amerikanische Umweltbehörde</td>
</tr>
<tr>
<td>UMK</td>
<td>Umweltministerkonferenz</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>UVP</td>
<td>Umweltverträglichkeitsprüfung</td>
</tr>
<tr>
<td>UVPG</td>
<td>Gesetz über die Umweltverträglichkeitsprüfung</td>
</tr>
<tr>
<td>UVP-V Bergbau</td>
<td>Verordnung über die Umweltverträglichkeitsprüfung bergbaulicher Vorhaben</td>
</tr>
<tr>
<td>VAWs</td>
<td>Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen und über Fachbetriebe</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compounds – flüchtige organische Verbindungen</td>
</tr>
<tr>
<td>Vol.-%</td>
<td>Volumenprozent</td>
</tr>
<tr>
<td>VwVfG</td>
<td>Verwaltungsverfahrensgesetz</td>
</tr>
<tr>
<td>WHG</td>
<td>Wasserhaushaltsgesetz</td>
</tr>
</tbody>
</table>
Literatur

BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) (2012): Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland. Hannover: BGR.

BMU (Hrsg.) (2007): Tiefe Geothermie in Deutschland. Berlin: BMU.

BMWi, BMU (2013): Formulierungshilfe für die Fraktionen der CDU/CSU und FDP. Entwurf eines Gesetzes zur Änderung des Wasserhaushaltsgesetzes. Vom Berlin: BMWi, BMU.

SRU-Stellungnahme Nr. 18

Literaturverzeichnis

GtV (Bundesverband Geothermie) (2012): Hintergrundpapier zur Stimulation geothermischer Reservoire. Berlin: GtV.

Ecofys, Deutsches Institut für Wirtschaftsforschung, Lithuanian Energy Institute, Utrecht University, Energy Banking Advisory, KEMA, Bocconi University. RE-Shaping Report D23 (Final report).

Environmental Science & Technology 45 (24), S. 10757–10764.

WEG (Wirtschaftsverband Erdöl- und Erdgasgewinnung) (o. J.a): Hydraulic Fracturing – Prozess und Perspektiven in Deutschland. Hannover: WEG.

Fracking zur Schiefergasgewinnung

Ein Beitrag zur energie- und umweltpolitischen Bewertung

Stellungnahme

Mai 2013

Nr. 18

ISSN 1612-2968

Mitglieder

Sachverständigenrat für Umweltfragen
Stand: Mai 2013

Prof. Dr. Martin Faulstich
(Vorsitzender)
Professor für Umwelt- und Energiotechnik
an der Technischen Universität Clausthal und
Geschäftsführer des CUTECh Instituts

Prof. Dr. Karin Holm-Müller
(stellvertretende Vorsitzende)
Professorin für Ressourcen- und Umweltökonomik
an der landwirtschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Prof. Dr. Harald Bradke
Leiter des Competence Centers Energiotechnologien und
Energiesysteme im Fraunhofer-Institut für System- und
Innovationsforschung ISI in Karlsruhe

Prof. Dr. Christian Calliess
Professor für öffentliches Recht und Europarecht
am Fachbereich Rechtswissenschaft
der Freien Universität Berlin

Prof. Dr. Heidi Foth
Professorin für Umwelttoxikologie und
Direktorin des Instituts für Umwelttoxikologie
der Martin-Luther-Universität Halle-Wittenberg

Prof. Dr. Manfred Niekisch
Professor für Internationalen Naturschutz
an der Goethe-Universität Frankfurt und
Direktor des Frankfurter Zoos

Prof. Dr. Miranda Schreurs
Professorin für Vergleiche Politikwissenschaft und
Leiterin des Forschungszenrums für Umweltpolitik
an der Freien Universität Berlin

Sachverständigenrat für Umweltfragen
Geschäftsstelle Luisenstraße 46
10117 Berlin

Telefon: (030) 26 36 96-0
E-Mail: info@umweltrat.de
Internet: www.umweltrat.de

Diese Stellungnahme ist im Internet abrufbar oder über die Geschäftsstelle
zu beziehen. © SRU 2013

ISSN 1612-2968